NCERT Solutions for Class 11 Physics Physics Part-1 Chapter 7

Gravitation Class 11

Chapter 7 Gravitation Exercise Solutions

<< Previous Chapter 6 : System Of Particles And Rotational Motion Next Chapter 1 : Mechanical Properties Of Solids >>

Exercise : Solutions of Questions on Page Number : 201

Q1 :  

Answer the following:

(a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?

(b) An astronaut inside a small space ship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity?

(c) If you compare the gravitational force on the earth due to the sun to that due to the moon, you would find that the Sun's pull is greater than the moon's pull. (You can check this yourself using the data available in the succeeding exercises). However, the tidal effect of the moon's pull is greater than the tidal effect of sun. Why?


Answer :

Answer: (a) No (b) Yes

(a) Gravitational influence of matter on nearby objects cannot be screened by any means. This is because gravitational force unlike electrical forces is independent of the nature of the material medium. Also, it is independent of the status of other objects.

(b) If the size of the space station is large enough, then the astronaut will detect the change in Earth's gravity (g).

(c) Tidal effect depends inversely upon the cube of the distance while, gravitational force depends inversely on the square of the distance. Since the distance between the Moon and the Earth is smaller than the distance between the Sun and the Earth, the tidal effect of the Moon's pull is greater than the tidal effect of the Sun's pull.

Answer needs Correction? Click Here

Q2 :  

Choose the correct alternative:

(a) Acceleration due to gravity increases/decreases with increasing altitude.

(b) Acceleration due to gravity increases/decreases with increasing depth. (assume the earth to be a sphere of uniform density).

(c) Acceleration due to gravity is independent of mass of the earth/mass of the body.

(d) The formula -G Mm(1/r2- 1/r1) is more/less accurate than the formula mg(r2- r1) for the difference of potential energy between two points r2and r1distance away from the centre of the earth.


Answer :

Answer:

(a) Decreases

(b) Decreases

(c) Mass of the body

(d) More

Explanation:

(a) Acceleration due to gravity at depth h is given by the relation:

Where,

= Radius of the Earth

g = Acceleration due to gravity on the surface of the Earth

It is clear from the given relation that acceleration due to gravity decreases with an increase in height.

(b) Acceleration due to gravity at depth d is given by the relation:

It is clear from the given relation that acceleration due to gravity decreases with an increase in depth.

(c) Acceleration due to gravity of body of mass m is given by the relation:

Where,

G = Universal gravitational constant

M = Mass of the Earth

R = Radius of the Earth

Hence, it can be inferred that acceleration due to gravity is independent of the mass of the body.

(d) Gravitational potential energy of two points r2 and r1 distance away from the centre of the Earth is respectively given by:

Hence, this formula is more accurate than the formula mg(r2– r1).

Answer needs Correction? Click Here

Q3 :  

Suppose there existed a planet that went around the sun twice as fast as the earth.What would be its orbital size as compared to that of the earth?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q4 :  

Io, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius of the orbit is 4.22 x 108 m. Show that the mass of Jupiter is about one-thousandth that of the sun.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q5 :  

Let us assume that our galaxy consists of 2.5 x 1011 stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be 105 ly.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q6 :  

Choose the correct alternative:

(a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative of its kinetic/potential energy.

(b) The energy required to launch an orbiting satellite out of earth's gravitational influence is more/less than the energy required to project a stationary object at the same height (as the satellite) out of earth's influence.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q7 :  

Does the escape speed of a body from the earth depend on

(a) the mass of the body,

(b) the location from where it is projected,

(c) the direction of projection,

(d) the height of the location from where the body is launched?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q8 :  

A comet orbits the Sun in a highly elliptical orbit. Does the comet have a constant (a) linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q9 :  

Which of the following symptoms is likely to afflict an astronaut in space (a) swollen feet, (b) swollen face, (c) headache, (d) orientational problem?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q10 :  

Choose the correct answer from among the given ones:

The gravitational intensity at the centre of a hemispherical shell of uniform mass density has the direction indicated by the arrow (see Fig 8.12) (i) a, (ii) b, (iii) c, (iv) O.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q11 :  

Choose the correct answer from among the given ones:

For the problem 8.10, the direction of the gravitational intensity at an arbitrary point P is indicated by the arrow (i) d, (ii) e, (iii) f, (iv) g.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q12 :  

A rocket is fired from the earth towards the sun. At what distance from the earth's centre is the gravitational force on the rocket zero? Mass of the sun = 2 x 1030 kg, mass of the earth = 6 x 1024 kg. Neglect the effect of other planets etc. (orbital radius = 1.5 x 1011 m).


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q13 :  

How will you 'weigh the sun', that is estimate its mass? The mean orbital radius of the earth around the sun is 1.5 x 108 km.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q14 :  

A Saturn year is 29.5 times the earth year. How far is the Saturn from the sun if the earth is 1.50 x 108 km away from the sun?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q15 :  

A body weighs 63 N on the surface of the earth. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q16 :  

Assuming the earth to be a sphere of uniform mass density, how much would a body weigh half way down to the centre of the earth if it weighed 250 N on the surface?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q17 :  

A rocket is fired vertically with a speed of 5 km s-1 from the earth's surface. How far from the earth does the rocket go before returning to the earth? Mass of the earth = 6.0 x 1024 kg; mean radius of the earth = 6.4 x 106 m; G= 6.67 x 10-11 N m2 kg-2.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q18 :  

The escape speed of a projectile on the earth's surface is 11.2 km s-1. A body is projected out with thrice this speed. What is the speed of the body far away from the earth? Ignore the presence of the sun and other planets.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q19 :  

A satellite orbits the earth at a height of 400 km above the surface. How much energy must be expended to rocket the satellite out of the earth's gravitational influence? Mass of the satellite = 200 kg; mass of the earth = 6.0 x 1024 kg; radius of the earth = 6.4 x 106 m; G = 6.67 x 10-11 N m2 kg-2.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q20 :  

Two stars each of one solar mass (= 2 x 1030 kg) are approaching each other for a head on collision. When they are a distance 109 km, their speeds are negligible. What is the speed with which they collide? The radius of each star is 104 km. Assume the stars to remain undistorted until they collide. (Use the known value of G).


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q21 :  

Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart on a horizontal table. What is the gravitational force and potential at the mid point of the line joining the centers of the spheres? Is an object placed at that point in equilibrium? If so, is the equilibrium stable or unstable?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q22 :  

As you have learnt in the text, a geostationary satellite orbits the earth at a height of nearly 36,000 km from the surface of the earth. What is the potential due to earth's gravity at the site of this satellite? (Take the potential energy at infinity to be zero). Mass of the earth = 6.0 x 1024 kg, radius = 6400 km.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q23 :  

A star 2.5 times the mass of the sun and collapsed to a size of 12 km rotates with a speed of 1.2 rev. per second. (Extremely compact stars of this kind are known as neutron stars. Certain stellar objects called pulsars belong to this category). Will an object placed on its equator remain stuck to its surface due to gravity? (Mass of the sun = 2 x 1030 kg).


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q24 :  

A spaceship is stationed on Mars. How much energy must be expended on the spaceship to launch it out of the solar system? Mass of the space ship = 1000 kg; mass of the Sun = 2 x 1030 kg; mass of mars = 6.4 x 1023 kg; radius of mars = 3395 km; radius of the orbit of mars = 2.28 x 108kg; G= 6.67 x 10-11 m2kg-2.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q25 :  

A rocket is fired 'vertically' from the surface of mars with a speed of 2 km s-1. If 20% of its initial energy is lost due to Martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it? Mass of mars = 6.4 x 1023 kg; radius of mars = 3395 km; G = 6.67 x 10-11 N m2 kg-2.


Answer :

Please Register/Login to get access to all solutions Facebook Login
<< Previous Chapter 6 : System Of Particles And Rotational Motion Next Chapter 1 : Mechanical Properties Of Solids >>

Physics Part-1 - Physics : CBSE NCERT Exercise Solutions for Class 11th for Gravitation will be available online in PDF book form soon. The solutions are absolutely Free. Soon you will be able to download the solutions.

Popular Articles