NCERT Solutions for Class 11 Physics Physics Part-2 Chapter 1

Mechanical Properties Of Solids Class 11

Chapter 1 Mechanical Properties Of Solids Exercise Solutions

<< Previous Chapter 7 : Gravitation Next Chapter 2 : Mechanical Properties Of Fluids >>

Exercise : Solutions of Questions on Page Number : 242

Q1 :  

A steel wire of length 4.7 m and cross-sectional area 3.0 x 10-5 m2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 10-5 m2 under a given load. What is the ratio of the Young's modulus of steel to that of copper?


Answer :

Length of the steel wire, L1 = 4.7 m

Area of cross-section of the steel wire, A1 = 3.0 × 10–5 m2

Length of the copper wire, L2 = 3.5 m

Area of cross-section of the copper wire, A2 = 4.0 × 10–5 m2

Change in length = ΔL1 = ΔL2 = ΔL

Force applied in both the cases = F

Young's modulus of the steel wire:

… (i)

Young's modulus of the copper wire:

Dividing (i) by (ii), we get:

The ratio of Young's modulus of steel to that of copper is 1.79 : 1.

Answer needs Correction? Click Here

Q2 :  

Figure 9.11 shows the strain-stress curve for a given material. What are (a) Young's modulus and (b) approximate yield strength for this material?


Answer :

(a) It is clear from the given graph that for stress 150 × 106 N/m2, strain is 0.002.

∴Young's modulus, Y

Hence, Young's modulus for the given material is 7.5 ×1010 N/m2.

(b) The yield strength of a material is the maximum stress that the material can sustain without crossing the elastic limit.

It is clear from the given graph that the approximate yield strength of this material is 300 × 106 Nm/2 or 3 × 108 N/m2.

Answer needs Correction? Click Here

Q3 :  

The stress-strain graphs for materials A and B are shown in Fig. 9.12.

The graphs are drawn to the same scale.

(a) Which of the materials has the greater Young's modulus?

(b) Which of the two is the stronger material?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q4 :  

Read the following two statements below carefully and state, with reasons, if it is true or false.

(a) The Young's modulus of rubber is greater than that of steel;

(b) The stretching of a coil is determined by its shear modulus.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q5 :  

Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q6 :  

The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a vertical wall. A mass of 100 kg is then attached to the opposite face of the cube. The shear modulus of aluminium is 25 GPa. What is the vertical deflection of this face?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q7 :  

Four identical hollow cylindrical columns of mild steel support a big structure of mass 50,000 kg. The inner and outer radii of each column are 30 cm and 60 cm respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q8 :  

A piece of copper having a rectangular cross-section of 15.2 mm x 19.1 mm is pulled in tension with 44,500 N force, producing only elastic deformation. Calculate the resulting strain?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q9 :  

A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum stress is not to exceed 108 N m-2, what is the maximum load the cable can support?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q10 :  

A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long. Those at each end are of copper and the middle one is of iron. Determine the ratio of their diameters if each is to have the same tension.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q11 :  

A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle. The cross-sectional area of the wire is 0.065 cm2. Calculate the elongation of the wire when the mass is at the lowest point of its path.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q12 :  

Compute the bulk modulus of water from the following data: Initial volume = 100.0 litre, Pressure increase = 100.0 atm (1 atm = 1.013 x 105 Pa), Final volume = 100.5 litre. Compare the bulk modulus of water with that of air (at constant temperature). Explain in simple terms why the ratio is so large.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q13 :  

What is the density of water at a depth where pressure is 80.0 atm, given that its density at the surface is 1.03 x 103 kg m-3?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q14 :  

Compute the fractional change in volume of a glass slab, when subjected to a hydraulic pressure of 10 atm.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q15 :  

Determine the volume contraction of a solid copper cube, 10 cm on an edge, when subjected to a hydraulic pressure of 7.0 x 106 Pa.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q16 :  

How much should the pressure on a litre of water be changed to compress it by 0.10%?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q17 :  

Anvils made of single crystals of diamond, with the shape as shown in Fig. 9.14, are used to investigate behaviour of materials under very high pressures. Flat faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends are subjected to a compressional force of 50,000 N. What is the pressure at the tip of the anvil?


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q18 :  

A rod of length 1.05 m having negligible mass is supported at its ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in Fig. 9.15. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2, respectively. At what point along the rod should a mass m be suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q19 :  

A mild steel wire of length 1.0 m and cross-sectional area 0.50 x 10-2 cm2 is stretched, well within its elastic limit, horizontally between two pillars. A mass of 100 g is suspended from the mid-point of the wire. Calculate the depression at the midpoint.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q20 :  

Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0 mm. What is the maximum tension that can be exerted by the riveted strip if the shearing stress on the rivet is not to exceed 6.9 x 107 Pa? Assume that each rivet is to carry one quarter of the load.


Answer :

Please Register/Login to get access to all solutions Facebook Login
Q21 :  

The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven km beneath the surface of water. The water pressure at the bottom of the trench is about 1.1 x 108 Pa. A steel ball of initial volume 0.32 m3 is dropped into the ocean and falls to the bottom of the trench. What is the change in the volume of the ball when it reaches to the bottom?


Answer :

Please Register/Login to get access to all solutions Facebook Login
<< Previous Chapter 7 : Gravitation Next Chapter 2 : Mechanical Properties Of Fluids >>

Physics Part-2 - Physics : CBSE NCERT Exercise Solutions for Class 11th for Mechanical Properties Of Solids will be available online in PDF book form soon. The solutions are absolutely Free. Soon you will be able to download the solutions.

Popular Articles