# NCERT Solutions for Class 12 Physics Physics Part 2 Chapter 2

## Wave Optics Class 12

### Exercise : Solutions of Questions on Page Number : 383

Q1 :

Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected, and (b) refracted light? Refractive index of water is 1.33.

Answer :

Wavelength of incident monochromatic light,

ÃŽÂ» = 589 nm = 589 × 10 - 9 m

Speed of light in air, c = 3 × 108 m/s

Refractive index of water, ÃŽÂ¼ = 1.33

(a) The ray will reflect back in the same medium as that of incident ray. Hence, the wavelength, speed, and frequency of the reflected ray will be the same as that of the incident ray.

Frequency of light is given by the relation,  Hence, the speed, frequency, and wavelength of the reflected light are 3 × 108 m/s, 5.09 ×1014 Hz, and 589 nm respectively.

(b) Frequency of light does not depend on the property of the medium in which it is travelling. Hence, the frequency of the refracted ray in water will be equal to the frequency of the incident or reflected light in air. Refracted frequency, ÃŽÂ½ = 5.09 ×1014 Hz

Speed of light in water is related to the refractive index of water as: Wavelength of light in water is given by the relation, Hence, the speed, frequency, and wavelength of refracted light are 2.26 ×108 m/s, 444.01nm, and 5.09 × 1014 Hz respectively.

Answer needs Correction? Click Here

Q2 :

What is the shape of the wavefront in each of the following cases:

(a) Light diverging from a point source.

(b) Light emerging out of a convex lens when a point source is placed at its focus.

(c) The portion of the wavefront of light from a distant star intercepted by the Earth.

Answer :

(a) The shape of the wavefront in case of a light diverging from a point source is spherical. The wavefront emanating from a point source is shown in the given figure. (b) The shape of the wavefront in case of a light emerging out of a convex lens when a point source is placed at its focus is a parallel grid. This is shown in the given figure. (c) The portion of the wavefront of light from a distant star intercepted by the Earth is a plane.

Answer needs Correction? Click Here

Q3 :

(a) The refractive index of glass is 1.5. What is the speed of light in glass? Speed of light in vacuum is 3.0 x 108 m s-1)

(b) Is the speed of light in glass independent of the colour of light? If not, which of the two colours red and violet travels slower in a glass prism?

Answer :

Please Register/Login to get access to all solutions
Q4 :

In a Young's double-slit experiment, the slits are separated by 0.28 mm and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm. Determine the wavelength of light used in the experiment.

Answer :

Please Register/Login to get access to all solutions
Q5 :

In Young's double-slit experiment using monochromatic light of wavelengthÃŽÂ», the intensity of light at a point on the screen where path difference is ÃŽÂ», is K units. What is the intensity of light at a point where path difference is ÃŽÂ» /3?

Answer :

Please Register/Login to get access to all solutions
Q6 :

A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young's double-slit experiment.

(a) Find the distance of the third bright fringe on the screen from the central maximum for wavelength 650 nm.

(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?

Answer :

Please Register/Login to get access to all solutions
Q7 :

In a double-slit experiment the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if the entire experimental apparatus is immersed in water? Take refractive index of water to be 4/3.

Answer :

Please Register/Login to get access to all solutions
Q8 :

What is the Brewster angle for air to glass transition? (Refractive index of glass = 1.5.)

Answer :

Please Register/Login to get access to all solutions
Q9 :

Light of wavelength 5000 Ãƒâ€¦ falls on a plane reflecting surface. What are the wavelength and frequency of the reflected light? For what angle of incidence is the reflected ray normal to the incident ray?

Answer :

Please Register/Login to get access to all solutions
Q10 :

Estimate the distance for which ray optics is good approximation for an aperture of 4 mm and wavelength 400 nm.

Answer :

Please Register/Login to get access to all solutions
Q11 :

The 6563 Ãƒâ€¦ line emitted by hydrogen in a star is found to be red shifted by 15 Ãƒâ€¦. Estimate the speed with which the star is receding from the Earth.

Answer :

Please Register/Login to get access to all solutions
Q12 :

Explain how Corpuscular theory predicts the speed of light in a medium, say, water, to be greater than the speed of light in vacuum. Is the prediction confirmed by experimental determination of the speed of light in water? If not, which alternative picture of light is consistent with experiment?

Answer :

Please Register/Login to get access to all solutions
Q13 :

You have learnt in the text how Huygens' principle leads to the laws of reflection and refraction. Use the same principle to deduce directly that a point object placed in front of a plane mirror produces a virtual image whose distance from the mirror is equal to the object distance from the mirror.

Answer :

Please Register/Login to get access to all solutions
Q14 :

Let us list some of the factors, which could possibly influence the speed of wave propagation:

(i) Nature of the source.

(ii) Direction of propagation.

(iii) Motion of the source and/or observer.

(iv) Wave length.

(v) Intensity of the wave.

On which of these factors, if any, does

(a) The speed of light in vacuum,

(b) The speed of light in a medium (say, glass or water), depend?

Answer :

Please Register/Login to get access to all solutions
Q15 :

For sound waves, the Doppler formula for frequency shift differs slightly between the two situations: (i) source at rest; observer moving, and (ii) source moving; observer at rest. The exact Doppler formulas for the case of light waves in vacuum are, however, strictly identical for these situations. Explain why this should be so. Would you expect the formulas to be strictly identical for the two situations in case of light travelling in a medium?

Answer :

Please Register/Login to get access to all solutions
Q16 :

In double-slit experiment using light of wavelength 600 nm, the angular width of a fringe formed on a distant screen is 0.1º. What is the spacing between the two slits?

Answer :

Please Register/Login to get access to all solutions
Q17 :

Answer the following questions:

(a) In a single slit diffraction experiment, the width of the slit is made double the original width. How does this affect the size and intensity of the central diffraction band?

(b) In what way is diffraction from each slit related to the interference pattern in a double-slit experiment?

(c) When a tiny circular obstacle is placed in the path of light from a distant source, a bright spot is seen at the centre of the shadow of the obstacle. Explain why?

(d) Two students are separated by a 7 m partition wall in a room 10 m high. If both light and sound waves can bend around obstacles, how is it that the students are unable to see each other even though they can converse easily.

(e) Ray optics is based on the assumption that light travels in a straight line. Diffraction effects (observed when light propagates through small apertures/slits or around small obstacles) disprove this assumption. Yet the ray optics assumption is so commonly used in understanding location and several other properties of images in optical instruments. What is the justification?

Answer :

Please Register/Login to get access to all solutions
Q18 :

Two towers on top of two hills are 40 km apart. The line joining them passes 50 m above a hill halfway between the towers. What is the longest wavelength of radio waves, which can be sent between the towers without appreciable diffraction effects?

Answer :

Please Register/Login to get access to all solutions
Q19 :

A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Find the width of the slit.

Answer :

Please Register/Login to get access to all solutions
Q20 :

Answer the following questions:

(a) When a low flying aircraft passes overhead, we sometimes notice

a slight shaking of the picture on our TV screen. Suggest a possible explanation.

(b) As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffraction and interference patterns. What is the justification of this principle?

Answer :

Please Register/Login to get access to all solutions
Q21 :

In deriving the single slit diffraction pattern, it was stated that the intensity is zero at angles of nÃŽÂ»/a. Justify this by suitably dividing the slit to bring out the cancellation.

Answer :

Please Register/Login to get access to all solutions

Physics Part 2 - Physics : CBSE NCERT Exercise Solutions for Class 12th for Wave Optics will be available online in PDF book form soon. The solutions are absolutely Free. Soon you will be able to download the solutions.

Popular Articles
 Exercise Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10 Question 11 Question 12 Question 13 Question 14 Question 15 Question 16 Question 17 Question 18 Question 19 Question 20 Question 21